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Abstract

We studied the spread of synchronous repetitive firing in mayaof purely excitatory
neurons. The network consisted of an array of up to 250 by 2b@ams connected locally.
We used a modified Rinzel's model for single neurons. Eaclamewas connected with
two neurons randomly chosen from eight neighbors. We déteinthe parameters of a
network model needed to reproduce synchronized activitipdally connected neurons.
The results of simulations in the full array of neurons swjjdieat the spread of activity and
the velocity of spread is dependent on the strength of thaexions. We found a range of
synaptic weights for which the velocity of propagation isagreement with measurements
of the propagation of epileptiform activity in neocortex.
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Introduction

Investigation of the generation and propagation of pastefractivity in neural net-
works is important in understanding the dynamics of the reémtervous system.
Experimental models of synchronous neural activity inetgchippocampal slice
[5], neocortical slice [7], cultures of dissociated spinald neurons [2] and cor-
tical neurons [3] allow measurements of basic physiologi@ameters of neurons
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capable of generation and spread of synchronous activitg. lippocampal slice
has been used extensively as the basis for neural networkls] of highly or-
ganized neural circuits. These simulations reveal geioerand rapid spread of
epileptiform activity in hippocampal circuits. In cultiwef dissociated spinal cord
neurons synchronous activity spreads in less organizedbmies of neurons. These
cultures may serve as models of spread of synchronoustgativietworks of neu-
rons lacking specific circuitry. Although neocortical agies in humans may appear
to spread rapidly, measurements of the velocities of prapag of epileptiform
activity in neocortical tissue [7] indicate that propagatis actually significantly
slower than the axon propagation speed and slower thanpobgmpal slices. This
suggests the possibility that this process is a cooperptie@omenon involving a
large number of sparsely, locally connected cells.

Methods

The network model we considered is a model of synapticallynected reduced
neurons generating action potentials. Cells are modelesirage compartment
units using modified Av-Ron-Rinzel’s reduced model equstid ](see Appendix).
The neuron model incorporates two inward currents,; and /,, three outward
potassium currents - the delayed rectifigr the Ca-dependetik ) and the tran-
sientl, current, and a leak currer},. The synaptic connection between cells is
modeled by a synaptic currefy,,,. The synaptic conductance is represented by a
sum of two exponential functions (see Appendix). The oVvestaéngth of a con-
nection is represented by a single synaptic weight pararaatta delay parameter
represents all delays between cells. We use a two dimensioag of up to 250 by
250 cells to simulate a two dimensional neural network (@ tfin slice or layer of
neocortical tissue). We assume that there is no significduitition in the network.
This can be interpreted either as being similar to a dissedieell culture after ap-
plying a blocker of inhibition (e.g. penicillin, picrotox) or cortical tissue where
local inhibition is dominated by excitation. Each cell rives excitatory input from
two of the nearest eight neighboring cells (Figure 1A); nbiliitory inputs were
included. A pseudo-random generator was used to choosesctions for each
cell. This produced a network with no predefined structurei@uits. All connec-
tions have equal strength. Individual cells and synapses peoperties based on
physiologic data. Simulations were initialized by an inputrent of15 pA/cm?
applied to one cell for 10@ns, e.g. the selected cell in the center of the array re-
ceived a input current strong enough to evoke a burst of mgimentials at the
beginning of the simulation. The membrane potentials féected cells and his-
tograms of generated action potentials for all cells weoemed. The histograms
were later used to generate animations of the spread oftgétivarrays of neurons.
Recorded membrane potentials for selected cells were nsedasure the velocity
of the propagation of bursts of action potentials. Resutismfthe measurements



Fig. 1. A. Schematic diagram of randomly connected locavngk of nine neurons. Each

neuron has two excitatory inputs and no inhibitory inputsTEces of simulated membrane
potential for all neurons shown in diagram A. The depolagzcurrent was applied on the
input of neuron no. 1 for 10@hs at the beginning of the simulation.Time bar = 1:003.

for border neurons for several simulations of differentdamly connected neural
networks were used for calculations of velocity. The ordyrdifferential equations
were solved numerically using the forward Euler method waittime step of 0.01
ms.

Results

Simulations of small networks consisting of 9-25 cells viittal random excitatory
connections show that at least two excitatory inputs foheesiron are necessary to
produce synchronized bursting. Output from a typical satiah is shown in Fig. 1.
In this simulation 300ns synchronized bursting activity was triggered by applying
a 100ms step current to one cell (shown in Fig. 1B). The length of tingsactivity

in such a small aggregate is dependent upon synaptic weighhe length of the
applied input current. Bursts were generated for synapeigits in the range of 6
to 9. In instances of small values of the synaptic weight endifvidual bursts in
single cells were observed. High values for the synaptigitetause continuous
activity in all neurons. In a square network array (150x180Qnons) with the same
local cell connection properties (as described above) weemed the spread of
burst firing throughout the neuronal array (Fig. 2A). Aftacieasing the relative
strength of current (¢ (increasing conductan@g .,y from 0.5 to 3.5n.5/cm?)
the continuous firing was replaced by a traveling wave ofvaygt{Fig. 2B). The
velocity of propagation increased with the increase of pyinatrength (Fig. 3).The
time wave of activity needed to travel from the cell in the tegrof an array of
neurons and the onset of bursting in one of the border cetisd/drom 1.5s to
0.25s when synaptic strength varied from 9 to 120.



Fig. 2. Pattern of activity in network. Each dark square espnts the entire array of neu-
rons. The brightness of each pixel is proportional to nundjeaction potentials fired by
respective neurons in the 1@@s interval ending at the given time (black is minimum, white
is maximum). The depolarizing current was applied on thefmbthe neuron in the center
of the array for 100ns at the beginning of the simulation. A. Array of 150 by 150 rens,
for this simulation synaptic weight is 20, delay is.60+0.4 ms, G (cq) = 0.5 mS/em?,
and other parameters are as described in Appendix. B. Exangpl traveling wave of ac-
tivity in an array of 250 by 250 neurons, synaptic weighis 40,7 ¢,y = 3.5 mS/em?,

all other parameters are same as in panel A.

Discussion

The mechanism of synchronization in these neural netwaksased on the as-
sumption that a single burst of action potentials in a prapyio cell, evokes a burst
in the postsynaptic cell. By putting together the intrinsicsting capability of sin-
gle cells with excitatory synaptic connections, we show flyachronized bursting
can occur in two or more locally connected neurons. This raeigm is fundamen-
tal to propagation of burst activity in our network model.dab activity of a group
of neurons causes sequential activation of adjacent aggpegf neurons and syn-
chronous activity propagates from one region to another.<Ddaulation suggests
that a relatively small number of random local excitatorpigections (two per neu-
ron) in the absence of inhibition can produce the spreadtofigcin the network.
These results are in accordance with physiological obsensin various experi-
mental conditions. Intracellular recordings from cultispinal cord neurons show
that sparsely connected cells are capable of generatirgpsymous bursting activ-
ity in absence of inhibition[2]. We considered this modal éonnectivity for our
simulation of a spatially distributed network. We were dlbleeproduce in this net-
work velocities of spread characteristic for neocorticsstie. We can assume that
each cell in our model represents one representative oetl & neocortical column,
which has excessive excitatory connections to adjacentmas. Thus, the distance
between cells in our network represents the distance beta@amns in neocortex,
(= 1 mm)[6]. In this case, the velocity is in the range of 0:02s - 0.1m/s. These
velocities are slower than the velocity of propagating veageactivity measured



in hippocampal slices (0.14/5)[5] but are in the range of velocities measured
in thalamic (0.01m/s)[4] and neocortex slices calculated from paroxysmal field
potentials (0.0%n/s)[3; 7].
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Fig. 3. lllustration of the dependence of velocity of spre&dctivity on synaptic weight in
an array of 250 by 250 neurons. On the vertical axis velosifiepresented as the number
of neurons per second, computed from the average time needgulead from the center
to a border neuron in the array. Error bars are computed fraaasurements for 2 or 4
symmetrically located border neurons for simulations ofiidomly connected networks
(N = 17). The horizontal axis represents relative synaptic weight

Appendix

Neuron model equations:
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Description and values of parameters used in model comipuist

V is the membrane potentidl/ is the recovery variablé; is the intracellular calcium con-
centration,X and B are respectively the calcium channel activation variabig the tran-
sient potassium channel inactivation variable. The stesale functionSns, Aso, Weo,
X+, and B, are modeled as sigmoidal curves (13), determined by twonpeters: the
half maximum voltage/; ,,(values are -31, -20, -35, -45 and -#)/ respectively) and a
slopea of the curve at this point (values are 0.065, 0.02, 0.055 @@ -0.095 respectively).
K, = 0.0002 is the conversion factor from calcium current to concemraandR = 0.006

is the removal rate constant of the intracellular calciumaemtration.C,,, = 1 uF/cm?

is the membrane capacitanee, is the relaxation time function (12), and = 25 ms
andr, = 10 ms are relaxation time constants for recové#y, calcium activationX, and
potassium transients inactivatids variables. lon current$; are described by the product
of three terms: the maximal conductangethe activation and inactivation variable or func-
tion, and the driving forcéV — V;). where:gn, = 120 mS/cm?, geca = 1.0 mS/cm?,
grx = 15mS/em?, ga = 12.5 mS/em?, gr, = 0.3 mS/cm?, 9K (ca) In the range 0.5-3.5
mS/em? are maximum conductances for the respective channeld/apd= —50 mV,
Voa = 124 mV, Vg = =72 mV, andV;, = —50 mV are values of the reversal po-
tentials for the respective ions and leak currdi. = 0.5 and Ko = 2 are the calcium
concentration functions constants.

Synaptic model equations:

Nsyn
Isyn = Z w;gj (t)(V - Esyn) (14)
j=1
N — At —At;
g(t) :asynz <e ao—e o > (15)

i=1

where: denotes summation over past action potentials Angder the number of input
synapsesg,,,, = 0.0112 mS/cm?, Ey,, = —10 mV,17g = 3 ms, 7, = 0.5 ms, w; in
range 7-120At; denotes time elapsed sint¢h action potential arrival at the synapge€,
is the number of past action potentials with significant dbation to the sum andV,,,, is
the number of synaptic inputs. In these simulationg,, = 2.
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