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Hoża 69, 00-681 Warsaw, PolandcDepartment of Physiology, University of Maryland School ofMedicine, Baltimore, MD
21201, USA

Abstract

We studied the spread of synchronous repetitive firing in an array of purely excitatory
neurons. The network consisted of an array of up to 250 by 250 neurons connected locally.
We used a modified Rinzel’s model for single neurons. Each neuron was connected with
two neurons randomly chosen from eight neighbors. We determined the parameters of a
network model needed to reproduce synchronized activity inlocally connected neurons.
The results of simulations in the full array of neurons suggest that the spread of activity and
the velocity of spread is dependent on the strength of the connections. We found a range of
synaptic weights for which the velocity of propagation is inagreement with measurements
of the propagation of epileptiform activity in neocortex.
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Introduction

Investigation of the generation and propagation of patterns of activity in neural net-
works is important in understanding the dynamics of the central nervous system.
Experimental models of synchronous neural activity including hippocampal slice
[5], neocortical slice [7], cultures of dissociated spinalcord neurons [2] and cor-
tical neurons [3] allow measurements of basic physiologic parameters of neurons1 supported by KBN grant 8T11B-020132 Supported by NIH grant NS 33732-01
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capable of generation and spread of synchronous activity. The hippocampal slice
has been used extensively as the basis for neural network models [5] of highly or-
ganized neural circuits. These simulations reveal generation and rapid spread of
epileptiform activity in hippocampal circuits. In cultures of dissociated spinal cord
neurons synchronous activity spreads in less organized networks of neurons. These
cultures may serve as models of spread of synchronous activity in networks of neu-
rons lacking specific circuitry. Although neocortical seizures in humans may appear
to spread rapidly, measurements of the velocities of propagation of epileptiform
activity in neocortical tissue [7] indicate that propagation is actually significantly
slower than the axon propagation speed and slower than in hippocampal slices. This
suggests the possibility that this process is a cooperativephenomenon involving a
large number of sparsely, locally connected cells.

Methods

The network model we considered is a model of synaptically connected reduced
neurons generating action potentials. Cells are modeled assingle compartment
units using modified Av-Ron-Rinzel’s reduced model equations [1](see Appendix).
The neuron model incorporates two inward currents -INa andICa, three outward
potassium currents - the delayed rectifierIK, the Ca-dependentIK(Ca) and the tran-
sientIA current, and a leak currentIL. The synaptic connection between cells is
modeled by a synaptic currentIsyn. The synaptic conductance is represented by a
sum of two exponential functions (see Appendix). The overall strength of a con-
nection is represented by a single synaptic weight parameter and a delay parameter
represents all delays between cells. We use a two dimensional array of up to 250 by
250 cells to simulate a two dimensional neural network (e.g.a thin slice or layer of
neocortical tissue). We assume that there is no significant inhibition in the network.
This can be interpreted either as being similar to a dissociated cell culture after ap-
plying a blocker of inhibition (e.g. penicillin, picrotoxin) or cortical tissue where
local inhibition is dominated by excitation. Each cell receives excitatory input from
two of the nearest eight neighboring cells (Figure 1A); no inhibitory inputs were
included. A pseudo-random generator was used to choose connections for each
cell. This produced a network with no predefined structure ofcircuits. All connec-
tions have equal strength. Individual cells and synapses have properties based on
physiologic data. Simulations were initialized by an inputcurrent of15 �A=cm2
applied to one cell for 100ms, e.g. the selected cell in the center of the array re-
ceived a input current strong enough to evoke a burst of action potentials at the
beginning of the simulation. The membrane potentials for selected cells and his-
tograms of generated action potentials for all cells were recorded. The histograms
were later used to generate animations of the spread of activity in arrays of neurons.
Recorded membrane potentials for selected cells were used to measure the velocity
of the propagation of bursts of action potentials. Results from the measurements
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Fig. 1. A. Schematic diagram of randomly connected local network of nine neurons. Each
neuron has two excitatory inputs and no inhibitory inputs. B. Traces of simulated membrane
potential for all neurons shown in diagram A. The depolarizing current was applied on the
input of neuron no. 1 for 100ms at the beginning of the simulation.Time bar = 100ms.
for border neurons for several simulations of different randomly connected neural
networks were used for calculations of velocity. The ordinary differential equations
were solved numerically using the forward Euler method witha time step of 0.01ms.
Results

Simulations of small networks consisting of 9-25 cells withlocal random excitatory
connections show that at least two excitatory inputs for each neuron are necessary to
produce synchronized bursting. Output from a typical simulation is shown in Fig. 1.
In this simulation 300ms synchronized bursting activity was triggered by applying
a 100ms step current to one cell (shown in Fig. 1B). The length of bursting activity
in such a small aggregate is dependent upon synaptic weight and the length of the
applied input current. Bursts were generated for synaptic weights in the range of 6
to 9. In instances of small values of the synaptic weight onlyindividual bursts in
single cells were observed. High values for the synaptic weight cause continuous
activity in all neurons. In a square network array (150x150 neurons) with the same
local cell connection properties (as described above) we observed the spread of
burst firing throughout the neuronal array (Fig. 2A). After increasing the relative
strength of currentIK(Ca) (increasing conductancegK(Ca) from 0.5 to 3.5mS=cm2)
the continuous firing was replaced by a traveling wave of activity (Fig. 2B). The
velocity of propagation increased with the increase of synaptic strength (Fig. 3).The
time wave of activity needed to travel from the cell in the center of an array of
neurons and the onset of bursting in one of the border cells varied from 1.5s to
0.25s when synaptic strength varied from 9 to 120.
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Fig. 2. Pattern of activity in network. Each dark square represents the entire array of neu-
rons. The brightness of each pixel is proportional to numberof action potentials fired by
respective neurons in the 100ms interval ending at the given time (black is minimum, white
is maximum). The depolarizing current was applied on the input of the neuron in the center
of the array for 100ms at the beginning of the simulation. A. Array of 150 by 150 neurons,
for this simulation synaptic weightw is 20, delay is1:60�0:4ms, gK(Ca) = 0:5mS=cm2,
and other parameters are as described in Appendix. B. Examples of a traveling wave of ac-
tivity in an array of 250 by 250 neurons, synaptic weightw is 40,gK(Ca) = 3:5mS=cm2,
all other parameters are same as in panel A.

Discussion

The mechanism of synchronization in these neural networks is based on the as-
sumption that a single burst of action potentials in a presynaptic cell, evokes a burst
in the postsynaptic cell. By putting together the intrinsicbursting capability of sin-
gle cells with excitatory synaptic connections, we show that synchronized bursting
can occur in two or more locally connected neurons. This mechanism is fundamen-
tal to propagation of burst activity in our network model. Local activity of a group
of neurons causes sequential activation of adjacent aggregates of neurons and syn-
chronous activity propagates from one region to another. Our simulation suggests
that a relatively small number of random local excitatory connections (two per neu-
ron) in the absence of inhibition can produce the spread of activity in the network.
These results are in accordance with physiological observations in various experi-
mental conditions. Intracellular recordings from cultured spinal cord neurons show
that sparsely connected cells are capable of generating synchronous bursting activ-
ity in absence of inhibition[2]. We considered this model for connectivity for our
simulation of a spatially distributed network. We were ableto reproduce in this net-
work velocities of spread characteristic for neocortical tissue. We can assume that
each cell in our model represents one representative cell from a neocortical column,
which has excessive excitatory connections to adjacent columns. Thus, the distance
between cells in our network represents the distance between columns in neocortex,
(� 1mm)[6]. In this case, the velocity is in the range of 0.02m=s - 0.1m=s. These
velocities are slower than the velocity of propagating waves of activity measured
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in hippocampal slices (0.14m=s)[5] but are in the range of velocities measured
in thalamic (0.01m=s)[4] and neocortex slices calculated from paroxysmal field
potentials (0.07m=s)[3; 7].
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Fig. 3. Illustration of the dependence of velocity of spreadof activity on synaptic weight in
an array of 250 by 250 neurons. On the vertical axis velocity is represented as the number
of neurons per second, computed from the average time neededto spread from the center
to a border neuron in the array. Error bars are computed from measurements for 2 or 4
symmetrically located border neurons for simulations of 7 randomly connected networks
(N = 17). The horizontal axis represents relative synaptic weight.

Appendix

Neuron model equations:Cm dVdt = Isyn � INa � ICa � IK � IK(Ca) � IA � IL (1)INa = gNam31(V )(1�W )(V � VNa) (2)ICa = gCaX2 KcKc + C (V � VCa) (3)IK = gKW 4(V � VK) (4)IK(Ca) = gK(Ca) CKd + C (V � VK) (5)IA = gAA1(V )B(V � VK) (6)IL = gL(V � VL) (7)dWdt = W1(V )�W�W (V ) (8)dXdt = X1(V )�X�X (9)
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dBdt = B1(V )�B�B (10)dCdt = Kp(�ICa)�RC (11)�W (V ) = 1� �ea(W )(V �V (W )1=2 ) + e�a(W )(V�V (W )1=2 )��1 (12)P1(V ) = �1 + e�2a(P )(V�V (P )1=2 )��1 ; for P =W;m;X;A;B (13)

Description and values of parameters used in model computations:V is the membrane potential,W is the recovery variable,C is the intracellular calcium con-
centration,X andB are respectively the calcium channel activation variable and the tran-
sient potassium channel inactivation variable. The steady-state functionsm1, A1, W1,X1, andB1 are modeled as sigmoidal curves (13), determined by two parameters: the
half maximum voltageV1=2(values are -31, -20, -35, -45 and -70mV respectively) and a
slopea of the curve at this point (values are 0.065, 0.02, 0.055, 2.0, and -0.095 respectively).Kp = 0:0002 is the conversion factor from calcium current to concentration andR = 0:006
is the removal rate constant of the intracellular calcium concentration.Cm = 1 �F=cm2
is the membrane capacitance.�W is the relaxation time function (12), and�X = 25 ms
and�B = 10 ms are relaxation time constants for recoveryW , calcium activationX, and
potassium transients inactivationB variables. Ion currentsIi are described by the product
of three terms: the maximal conductancegi, the activation and inactivation variable or func-
tion, and the driving force(V � Vi). where:�gNa = 120 mS=cm2, �gCa = 1:0 mS=cm2,�gK = 15 mS=cm2, �gA = 12:5 mS=cm2, �gL = 0:3 mS=cm2, �gK(Ca) in the range 0.5-3.5mS=cm2 are maximum conductances for the respective channels andVNa = �50 mV ,VCa = 124 mV , VK = �72 mV , andVL = �50 mV are values of the reversal po-
tentials for the respective ions and leak current.Kd = 0:5 andKC = 2 are the calcium
concentration functions constants.

Synaptic model equations:Isyn=NsynXj=1 wjgj(t)(V �Esyn) (14)g(t) = gsyn NXi=1 �e��ti�d � e��ti�o � (15)

where i denotes summation over past action potentials andj over the number of input
synapses.gsyn = 0:0112 mS=cm2, Esyn = �10 mV ,�d = 3 ms, �o = 0:5 ms, wj in
range 7-120,�ti denotes time elapsed sincei-th action potential arrival at the synapse,N
is the number of past action potentials with significant contribution to the sum andNsyn is
the number of synaptic inputs. In these simulationsNsyn = 2.
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