
paper

2000/12/2

page 1

i

i

i

i

i

i

i

i

Implementation of a

Biologically Realistic

Parallel

Neocortical-Neural

Network Simulator�

E. Courtenay Wilsony, Philip H. Goodmanz, and

Frederick C. Harris, Jr.x

1 Introduction

The primary goal of this simulator is to create a novel classi�er based on a biologi-

cally realistic neocortical-neural network. Parallel processing of this very large-scale,

object-oriented simulator is key for approaching real-time simulation of synaptic

and neocortical network dynamics. Clustering algorithms applied to the dense cell-

connection matrix enable load-balancing and data parallelism by organizing highly

connected groups of cells onto a particular node, thus reducing the performance

cost of inter-nodal communication.

The simulation is accomplished by modeling a whole community of cells within

a brain structure and observing the emergent behavior of this system. This modeling

is done using �ne grain parallelization, as opposed to very small scale cellular net-

works and coarse grain parallelism, such as that found in NEURON or GENESIS[7].

The structure of the rest of this paper is as follows: in Section 2 we begin with

an overview of the connectivity within the brain and its relevance to our simulation.

In Section 3 we present the Object-Oriented design of this simulation. Section 4

�Funding for this paper furnished by the O�ce of Naval Research under multiple contracts.
yDepartment of Computer Science, University of Nevada, Reno, ecwilson@cs.unr.edu
zDepartment of Internal Medicine, University of Nevada School of Medicine, Reno, good-

man@unr.edu
xDepartment of Computer Science, University of Nevada, Reno, fredh@cs.unr.edu

1



paper

2000/12/2

page 2

i

i

i

i

i

i

i

i

2

follows with an overview and a discussion of how the control 
ow is implemented,

including MPI's role in internodal communication Section 5 wraps up this paper

with our Results, Conclusions, and a brief discussion of some Future Work.

2 Biological and Computational Motivations

2.1 Biological Topology

The computational topology of the cortical simulator is based on a biological model

of a mammalian neocortex. The neocortex is organized into functional units called

columns, which are made up of multiple layers. Each column and each layer perform

given tasks and contain highly connected groups of various cell types.

The cell types that make up the columns and layers of the neocortex are

heterogeneous and perform various functions. For example, some cell types contain

excitatory synapses, which means that their synaptic outputs will stimulate the

connected cell to raise its voltage level, thus bringing it closer to �ring an action

potential. Other cell types, called interneurons[4], contain inhibitory synapses, and

their outputs typically have a dampening e�ect on connected cells, lowering the

voltage of the connected cells, and making it harder for the connected cell to �re

an action potential.

Each cell type consists of compartments[6], such as dendrites, a soma, an

axon, channels[5], and synapses. The functions of each are roughly described as

follows: The dendrites are responsible for bringing inputs into the soma, these inputs

typically come from other cells that have reached threshold and are �ring an action

potential. The soma is where the integrate-and-�re process takes place{a process

which entails the aggregation of all inputs, calculation of membrane voltage, and

the decision of whether or not to �re an action potential. The axon is responsible

for carrying the output signal to the cells that will receive this signal.

The synapses are the contextual �lters whose e�ectiveness is modi�ed based

on the timing of the input to each cell. They are also responsible for converting

the binary action potential input signal to a resulting analog post synaptic current

(PSC). The synapses are classi�ed as either excitatory or inhibitory. The excitatory

PSC is a positive waveform, and the inhibitory PSC is a negative waveform.

The channels are responsible for a�ecting the membrane voltage by accepting

or rejecting certain ions. These ion 
uxes are triggered by the release of neuro-

transmitters from the connecting synapse. Certain types of channels will help a cell

reach threshold and �re, and other types of channels will dampen this response.

The mechanics of the integrate-and-�re process are such that a given compart-

ment within a cell aggregates all of its inputs, calculates the resulting membrane

voltage, and, if it is equal to or greater than the threshold for that compartment,

outputs a resulting spike shape as the action potential. The spike[8] shape is a short

burst of voltage, on the order of only seven to ten milliseconds, and ranging from the

threshold value to somewhere above positive 40 millivolts. This spike shape trig-

gers the synapses on the connecting cells to release neurotransmitters. This release

results in a PSC waveform on the connecting compartment's membrane, thereby

beginning anew the cycle of a binary event (the spiking action potential) triggering



paper

2000/12/2

page 3

i

i

i

i

i

i

i

i

3

an analog event (the PSC), which triggers a binary event, and so on.

2.2 Computational Topology

The computational topology is closely modeled after the biological principles men-

tioned above. The user speci�es a template for each segment of the model, with

biological principles speci�ed. The segments are labeled as follows: Anatomical Ele-

ments (column and layer shell); Physiological Elements (stimulus, channel, synapse,

spike shapes); Physiological Constructs (compartment, cell type); Anatomical Con-

structs (layer, column, brain); and Reports.

Certain biomechanics are mimicked through templates rather than an intricate

modeling process. For example, the spike shape and PSC waveforms are two such

templates that are speci�ed by the user. The choice for making some processes

into templates was done to expedite the modeling of very large scale networks.

Conversely, other neuron modeling tools, such as NEURON and GENESIS, model

these processes explicitly in single neuron models. Thus one has the trade o�

between network size and computational complexity.

The cell/compartment to cell/compartment connectivity is speci�ed by the

user as a probabilistic function, where only the compartments within a given cell

are connected absolutely. For example, within layer 4, cell type1 is connected to

cell type2 by synapse type1 and probability 0.5. Connectivity on all levels of the

brain can be speci�ed, or left blank. If no connectivity is speci�ed, the program

will run, but no communication between cells will take place.

3 Object-Oriented Design

Because the brain itself is segmented into compartments and individual objects

such as synapses, dendrites, and channels, the choice of the object-oriented de-

sign matches the biological model. Each object utilizes the Standard Template

Library as containers for other objects, and each object encapsulates functional-

ity that is speci�c to that object only. In this way, the synapse object handles

synaptic learning, outputting of PSC waveforms, and Redistribution of Synaptic

E�cacy calculations[10]. Likewise the channel object encapsulates the calculations

of channel currents and outputs those currents to the parent compartment.

The object-oriented model allows the simulator to model objects generically,

changing their results through the input parameters without a�ecting the underlying

object functionality. In this way, we can model other areas of the brain with little

computational changes, changing primarily the input parameters.

On a computational level, there are several basic forms of objects. Some are

containers for other objects and maintainers of administrative data, while others are

both containers and state machines. Other objects perform speci�c functions that

are important to the computational side but do not directly e�ect the biological

system.

The fundamental types consist of the following objects: synapses, channels,

and spike shapes. These are owned by another object, perform speci�c biological or

data-collection functions, and receive input from and output data to their owning



paper

2000/12/2

page 4

i

i

i

i

i

i

i

i

4

object. The spike shape is responsible for giving to its owner object the values

for a given indexed timestep. These values mimic the spike shape that a certain

compartment may output after reaching threshold and �ring.

The container objects are ones that are holders for other objects and, in some

cases, for administrative data. These objects are responsible for ensuring that each

owned object is visited and updated. One of the container objects is the cell object,

which is a container for the compartment objects. It is responsible for ensuring that

the messages are delivered to the appropriate compartment, whether that message

comes from outside the cell or within the cell (from another compartment). Of

these contained compartments, only the soma is the minimum required to mimic a

point to point model.

Another container object is the brain itself. The brain is a container for the

virtual global cells list, the stimulus objects, and the report objects. The brain

is responsible for ensuring that the stimulus objects are visited (to send data to

the cells), that the report objects are visited (to collect data on the cells), that

the MessageBus object is visited (to ensure message passing), and that each con-

stituent cell/compartment is visited. The brain object is also responsible for such

administrative duties as calculating for how many time ticks the program runs and

incrementing the counter on each time tick.

The object that is both a container and a state machine is the compartment

object. It is a container of such objects as synapses, channels, and spike shapes.

It is a state machine in that its membrane voltage is calculated and updated at

each time step. This is where the heart of the cortical simulator is located. All

the integrate-and-�re routines exist here, and all action potentials are �red from

compartment objects to other compartment objects (within cell or outside cell). If

there is no input from the contained objects or external sources, the compartment

still changes state{it's membrane voltage degrades by a pre-set amount towards

resting potential.

The compartment is a generic object that switches based on given input pa-

rameters. For example, only one compartment object is used to model all of the

compartments within the cell{that is the basal dendrites, the apical dendrites, an

axon, and the soma. Everything is based on the variables that were speci�ed in the

user input �le, including whether or not this particular compartment will �re an

action potential, and, if so, which spike shape it will utilize.

The compartment also contains a list of cell/compartment data, to which

cell/compartment it is sending action potentials, and from which cell/compartment

it is receiving action potentials. This connection matrix forms the heart of the

inter-cell/compartment connectivity and message passing.

The other types of objects are those that perform speci�c functional tasks.

The stimulus object calculates a given voltage or current stimulus based on the

user-de�ned choice of types ranging from a linear function, to a pulsed (staircase

or constant) function, to a sine function. These functions are designed to mimic

signals that are coming in from other parts of the brain as well as to mimic external

stimuli (like a voltage clamp).

The report object handles the data processing of what to report on, which

cell/compartment to receive this report, and at what frequency the report is to be



paper

2000/12/2

page 5

i

i

i

i

i

i

i

i

5

received. The most detailed reporting is done every single timestep, although this

is computationally expensive.

The FileIO object handles the �le input/output in a threaded manner. It

outputs the data from a cell/compartment to a given �le. This output �le is later

processed and reformatted into a more user friendly display.

The message object is a collection of data that is used in communication

between all objects within the simulator. The ownership of the message object

(once instantiated), passes from the sender to the receiver. It is the responsibility

of the sender to allocate the memory for the message and for the receiver to de-

allocate the memory once used.

One of the most important functional objects is the MessageBus object. Its

detailed model will be discussed in a later section; however, it is responsible for all

of the message passing between cells, stimulus and cells, and reports and cells. It

encapsulates all of the MPI calls, and, through MPI, it is responsible for all inter-

nodal communication. It is utilized at all stages of the simulator, from initialization

to simulation end. It is also responsible for synchronizing the globally distributed

set of brains, so as to prevent race conditions, deadlock, and starvation.

4 Simulator Implementation

4.1 Overview

In the brain, there is a high degree of connectivity within columns of highly clus-

tered cells and much less connectivity across column boundaries. The input data �le

mimics the biological realism of the brain as much as possible by stipulating con-

nectivity on several levels: intra-cell (inter-compartment), intra-layer (inter-cell),

intra-column (inter-layer), and intra-brain (inter-column)[2]. The connectivity of

cells within a layer, column, or brain is speci�ed by the user as a probabilistic func-

tion. Only the intra-cell connectivity is non-probabilistic: a cell either has a speci�c

compartment or it doesn't.

The parallel algorithm for the cortical network simulator consists of several

steps. The �rst step is the reading and parsing of the input data �le. Once all of

the data templates are input and error-checked for biological accuracy, the distri-

bution begins. The distribution algorithm makes a connection matrix based on the

connectivity speci�ed in the input data �le. A deterministic clustering algorithm is

then employed to aggregate groups of high connectivity.

If a cell is considered \empty" (meaning it is not connected to other cells)

and the user has speci�ed the ignoring of empty cells, then it is deleted, and the

connectivity matrix is modi�ed to re
ect this change. This modi�cation improves

the load of computation by ignoring those cells that do not contribute to the overall

network of cells within the brain, while mimicking the biological realism of the phase

of cell die-o�. The cell data are then partitioned so that each node in the cluster has

its own portion. This reduces the performance cost of inter-nodal communication

by grouping together highly connected cells onto one node.

Once the cell distribution map is established, each node instantiates the ob-

jects according to the global connection matrix if that object has been designated



paper

2000/12/2

page 6

i

i

i

i

i

i

i

i

6

for that node. The individual cell's connection matrix is created and owned by that

cell. Now the program is ready to begin the actual neocortical simulation.

The main simulation consists of a brain loop in which all the cell-to-cell com-

munication is handled via a MessageBus object[1], which functions as a router for

packing and delivering of the messages. This structure allows us to encapsulate

the message-passing paradigm, thus allowing us to swap out our current MPI-based

implementation with other communication paradigms. This is a critical issue in

porting of this simulator to other hardware platforms.

The message that is sent between cells contains two things (1) a static set of

data that is consistent for each message and (2) a dynamic set of data that changes

depending on the message type. The static data set contains the message type,

sending address, the receiving address, and time step (i.e., the message envelope).

The dynamic data set contains such information as the membrane voltage values,

external stimuli values (current or voltage), or reporting information.

When a cell �res an action potential it communicates this event through the

MessageBus to all the cells in its connection matrix. The MessageBus then relays

these messages to the cells speci�ed. If the receiving cell is o�-node, it is the respon-

sibility of the MessageBus to package this in an appropriate way and communicate

it to the proper node, at which point the MessageBus on that node forwards it to

the local recipient cell. The sending and receiving of messages is done in such a way

as to prevent node starvation or deadlock. These new messages are then bu�ered

to be read by the MessageBus on that local node.

This whole process occurs for each simulated time tick and is synchronized to

prevent a race condition whereby certain nodes can become many time ticks ahead

of other nodes in the simulation. The synchronization is important for maintaining

biological realism as it allows each cell to aggregate all inputs for each time tick in

order to perform its integrate and �re calculations.

4.2 Control Flow Implementation

The control 
ow of the cortical simulator consists of three major stages: initializa-

tion, brain computations, and �nally post-processing of the data. Each stage and

its constituent parts are discussed in some detail within this section.

The initialization stage is handled by the InitializationManager object and

consists of multiple functional units. This stage occurs on all nodes within the

cluster concurrently with switches for computation that should occur on particular

nodes.

The �rst step of initialization is the reading and parsing of the input �le. This

�le contains templates for biological data structures (i.e., cells, channels, synapses,

columns, layers, etc.), functional units (such as reports, stimulus), and connectivity.

The data from the input �le is stored in temporary variables which utilize the

dynamic memory allocation of the Standard Template Library vectors.

The second step of initialization is the displaying of values to the user. The

DisplayObjects object, if requested by the user, will prompt the user to accept/reject

the con�guration that has just been read in.

The third step of initialization is the error checking of the temporary variables.



paper

2000/12/2

page 7

i

i

i

i

i

i

i

i

7

The ErrorCheck object is responsible for examining the data for consistency and

biological accuracy. In case of errors in the input, it will display the incorrect

variable along with the correct range of values for that variable.

The fourth step in initialization is groundwork for parallelization of the simula-

tion. This step is handled by the CreateConnectMatrix object, which is responsible

for �lling in the global connectivity matrix. CreateConnectMatrix utilizes the con-

nection schemes that were speci�ed by the user and stores this information in the

CellManager object. This object holds the groups of cell types, their location in

the brain (column & layer), and their global cell id values. The CreateConnect-

Matrix object updates each cell list in the CellManager with the constituent cells

connections.

The �fth step creates the DistributionManager object which uses the connec-

tion information now stored in the CellManager to compute the distribution of the

cell groups onto the nodes within the cluster. During this process the Distribution-

Manager updates the CellManager with the node number for each cell group. The

CellManager can then be used when instantiating the cell objects.

The sixth step in initialization is the instantiating of each object from the

biological template provided by the user. The MakeObjects object handles this

task. Each node in the cluster has a MakeObjects object which is responsible

for checking the current machine number, and only making those cells which are

situated on that particular machine. The CellManager object is utilized heavily for

this task as it stores the machine location for each cell being instantiated. This

step creates the data parallelization of the cortical simulator. The global cell list is

now a virtual global list, in which its constituent parts are spread out among the

di�erent nodes within the cluster.

The last step in initialization is the connecting of the cell/compartments. This

is handled on each node, where each node �lls in the connection matrix for the given

cell/compartment based on whether or not it exists on this node. The Synapse

objects are then instantiated on the receiving node, and they are then owned by

the receiving cell/compartment. The MessageBus is employed at this point to send

data to each cell/compartment with the synapse ID values.

After the initialization stage is complete, each constituent helper object is

deleted. The brain objects on each machine are synchronized before beginning the

next stage of the simulation, which is the brain computation. This computation

is the same on each node. On each timestep, the brain visits the objects that it

contains. These include the stimulus objects (which may or may not send values

to cell/compartments), the reports objects (which may or may not send report

requests to cell/compartments), the MessageBus (to send and receive messages and

pass them along to cell/compartments on this node and on external nodes), and

each cell within its local list. These cells then visit each compartment contained

within them, which process the integrate-and-�re routines mentioned above.

The third and �nal stage of the simulator takes place once the Brain object

has completed its pre-determined number of cycles. This stage consists of using the

PostProcessing object to reformat the output data �les into a more user friendly

context. This process inputs each output �le and reformats it into a speci�ed display

which could be either a text �le or a web-based PHP �le. Once this post processing is



paper

2000/12/2

page 8

i

i

i

i

i

i

i

i

8

completed, the simulation deletes all allocated memory and the program terminates.

4.3 MPI and Communication

The MessageBus object is an important object for facilitating communications be-

tween objects within each brain. Through the use of MPI[3, 9, 11], our current

implementation handles communication with external nodes. The communication

scheme of the cortical simulator is best described by the diagram in Figure 1.

(other node)

Reports

StimulusBrain:

    for cells
    containers 

File I/O

Interconnection
Network

MessageBus

MessageBus

Figure 1. Communication Model

The algorithm for preventing deadlock and starvation is based on a simple

All-to-all personalized message exchange Each node sends a message at each time

step; the MPI element TAG is utilized to distinguish between data messages, empty

messages, and multi-part messages. The MessageBus exits this stage only when the

sign o� has been given for each node within the cluster. In this way, the MessageBus

prevents a situation whereby one node in the cluster has not �nished sending its

messages but the other MessageBuses have �nished receiving. The MessageBus uses

blocking sends (MPI Send) and blocking receives (MPI Recv).

In order to send a message to an o�-node cell, the MessageBus processes the

outgoing message queue and formats each message to a particular node into a user

de�ned MPI data type, stores it onto a user de�ned MPI bu�er, and sends this

bu�er to the designated destination node. Once the message has been sent, the

memory allocated by that message object is deleted.

On a local level, the MessageBus checks the destination of each message, and

if it is the same as the current node, no MPI communication operations are used

for the message object to be passed to the particular cell/compartment addressed

in the message.

The MessageBus also uses a synchronization to create a lock step barrier,

so that the brains on di�erent nodes reach the MessageBus at the same time, to



paper

2000/12/2

page 9

i

i

i

i

i

i

i

i

9

process messages in the same order. This barrier prevents a deadlock condition (one

MessageBus is sending but no other MessageBus is receiving), as well as preventing

a starvation situation (one MessageBus is receiving, but no other nodes are sending).

5 Results, Conclusions, and Future Work

The sequential implementation was �nished at the end of the summer of 2000. Once

this implementation was completed, it was evaluated and tested for biological real-

ism and accuracy. This was accomplished by comparing our results with published

and accepted results for channels[5], compartments[7], and synapses[4, 10].

The sequential implementation was then changed into a parallel implemen-

tation as described previously, and we are in the process of evaluating this imple-

mentation. At this point in our research, we have tested our implementation on

two architecture platforms. The �rst platform is a dual processor Sun Enterprise

server with 2GB of shared memory, and the second platform is a Beowulf cluster

of 8 Pentium II 400 machines with dual 100 Mbs Ethernet connections to a Bay

network switch.

On the shared-memory architecture, we have run the simulation with one and

two processors and have scaled the number of cells per processor from 40 to 200.

On the Cluster we have run the simulation with one, two, and four processors and

have also scaled the number of cells from 40 to 200 per node.

Connectivity in each of these cases was set at such a level that would stress

the implementation and help us determine the architectural limits of each hardware

platform. For our tests we chose a cell connectivity of approximately n2. Seventy-

�ve percent of the cells were receiving external voltage from the Stimulus object

which was set at such a level so as to force an action potential to occur. This

stimulus arrived at regular intervals for 60% of the total simulation time. When the

cell receives this stimulus and �res an action potential it then sends a message to

each cell to which it is connected which, in turn, causes a cascade of communication.

In Figure 2 we show the results of our simulation running on the dual processor

Sun shared-memory machine, and in Figure 3 we show the results from the Beowulf

cluster using the same number of CPUs and cells.

It is clear from comparing these results that communication latency is a ma-

jor factor in performance of our simulation. We have shown an improvement in the

performance on a well-connected machine but a decrease on a loosely coupled ma-

chine. Therefore, in order to achieve the results we desire, we will need to continue

evaluation on an architecture that can support massive communication between the

cells.

In conclusion, once this simulator is operating with hundreds of thousands to

millions of cells, it will allow us to address the following types of questions: What

minimal micro-circuit must be replicated to create a functional cortical column?

How many such columns must interact to demonstrate emergent behavior, such as

the remarkable generalization ability of mammalian brain \classi�ers"? We will

also be able to compare brain-like computation to existing arti�cial neural network

and traditional non-neural classi�ers in order to address several other challenging



paper

2000/12/2

page 10

i

i

i

i

i

i

i

i

10

0

2000

4000

6000

8000

10000

40 80 120 160 200

Brain Time

Number of Cells

1 CPU �

�
�

�

2 CPUs +

+
+

+

+

Figure 2. Brain Time (in seconds) on a dual processor shared memory machine

0

2000

4000

6000

8000

10000

40 80 120 160 200

Brain Time

Number of Cells

1 CPU �

�
�

�

2 CPUs +

+

+

+

+

Figure 3. Brain Time (in seconds) on our Beowulf Cluster

problems such as pattern recognition, real-time human gesture recognition, and

navigation.



paper

2000/12/2

page 11

i

i

i

i

i

i

i

i

Bibliography

[1] Javier Campos, Susanna Donatelli, and Manuel Silva. Structured solution

of asynchronously communicating stochastic modules. IEEE Trans. on Soft.

Engr., 25(2):pp. 147{165, March/April 1999.

[2] Satish Chandra, Bradley Richards, and James R. Larus. Teapot: A domain-

speci�c languages for writing cache coherence protocols. IEEE Trans. on Soft.

Engr., 25(3):pp. 317{333, May/June 1999.

[3] Willaim Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Par-

allel Programming with the Message-Passing Interface. MIT Press, Cambridge,

MA, 1994.

[4] Anirudh Gupta, Yun Wang, and Henry Markram. Organizing principles for a

diversity of GABAergic interneurons and synapses in the neocortex. Science,

287:273{278, January 14 2000.

[5] Dax A. Ho�man, Je�ery C. Magee, Costa M. Colbert, and Daniel Johnston. K+

channel regulation of signal propogation in dendrites of hippocampal pyramidal

neurons. Nature, 387:869{875, June 26 1997. Correction in volume 390 pg 199.

[6] Christof Koch. Biophysics of Computation. Oxford Univ. Press, New York,

NY, 1999.

[7] Christof Koch and Idan Segev. Methods of Neuronal Modeling. MIT Press,

Cambridge, MA, 2nd edition, 1998.

[8] Wolfgang Maas and Christopher M. Bishop, editors. Pulsed Neural Networks.

MIT Press, Cambridge, MA, 1999.

[9] Peter Pacheco. Parallel Programming with MPI. Morgan Kau�man, San Fran-

cisco, CA, October 1996.

[10] Walter Senn, Henry Markram, and Misha Tsodyks. An algorithm for modify-

ing neurotransmitter release probability based on pre- and post-synaptic spike

timing. Neural Computation, to appear. Accepted February 16, 2000.

[11] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack

Dongerra. MPI: The Complete Reference. MIT Press, Cambridge, MA, 1996.

11


